CTF中RSA的一些攻击思路

RSA一些比赛,以后再更新~

关于RSA算法

RSA加密算法是一种非对称加密算法,1977年由Ron Rivest、Adi Shamir和Leonard Adleman一起提出的,算法安全性依赖于极大整数做因数分解的难度

RSA算法加解密实现

1.随意选择两个大素数pq,且p不等于q,计算N=p***q

2.计算n的欧拉函数φ(n) = (p-1)(q-1)(常用phi(n)表示φ(n)

3.选择一个整数e,满足1< e < φ(n),且e与φ(n) 互质(e通常取65537)

4.计算模反元素ded ≡ 1 (mod φ(n)) 即求解ex + φ(n)y = 1方程组(利用扩展欧几里得算法可以求出d

1
d = gmpy2.invert(e, (p-1)*(q-1))

5.得到公钥(N,e)私钥(N,d)

6.加密 c = pow(m,e,N)

7.解密 m = pow(c,d,N)

RSA在CTF中的攻击方法

gmpy2 安装

sudo apt install libmpc-dev

pip/pip3 install gmpy2

sage安装

https://mirrors.tuna.tsinghua.edu.cn/sagemath/linux/64bit/index.html

明文解密

模互素

d = gmpy2.invert(e,(p-1) * (q-1))

m = gmpy2.powmod(c,d,n)

模不互素

第一种情况

给出 p,q,c,e且gcd(e, (p-1)*(q-1))非常小(可能为3)

example:

p,q = 3881, 885445853681787330351086884500131209939

c = 1926041757553905692219721422025224638913707

e = 33

第二种情况

给出n1,n2,e1,e2,c1,c2求满足以下式子

assert p = gcd(n1,n2)

assert pow(flag,e1,n1)==c1

assert pow(flag,e2,n2)==c2

assert gcd(e1,(p1-1) * (q1-1))==gcd(e2,(p2-1) * (q2-1))

低加密指数攻击

m ^ e = kn + c 其中一般 e = 3,k比较小(k小于10亿爆破时间一般小于半小时)

低加密指数广播攻击

c1 ≡ m^e mod n1

c2 ≡ m^e mod n2

……

ce ≡ m^e mod ne

如以上所示,e比较小,题目给出n[e]和c[e],且m相同,利用中国剩余定理可以求m

低解密指数攻击

与低加密指数攻击相反,需要满足e非常大,接近于N

共模攻击

c1 ≡ m^e1 mod n

c2 ≡ m^e2 mod n

如以上使用了相同的模数N对相同的明文进行加密

Boneh and Durfee attack

e 非常大接近于N,跟低解密指数攻击类似,比低解密指数攻击更强,可以解决d<N的0.292次方的问题

Coppersmith攻击:已知p的高位攻击

知道p的高位为p的位数的约1/2时即可

Coppersmith攻击:已知明文高位攻击

Coppersmith攻击:已知d的低位攻击

如果知道d的低位,低位约为n的位数的1/4就可以恢复d

Coppersmith攻击:明文高位相同

已知dp或dq(dp = d mod p-1,dq = d mod q-1)

Least Significant Bit Oracle Attack

其他思路

给出两组数据

n1,c1,e1,n2,c2,e2且无以上特征可尝试gcd(n1,n2)得到公因子(存在的话)

给出一组数据

n1,c1,e1

尝试yafu或http://www.factordb.com分解n(p,q相差过大或过小yafu可分解成功)

给出如下数据

p,q,nextprime(p),nextprime(q)

n1 = p * q

n2 = nextprime(p) * nextprime(q)

n = n1 * n2

用yafu分解n可得到

n3 = p * nextprime(q)

n4 = q * nextprime(p)

GitHub地址

https://github.com/yifeng-lee/RSA-In-CTF

参考文章

https://www.tr0y.wang/2017/11/06/CTFRSA/index.html

http://inaz2.hatenablog.com/entry/2016/01/20/022936

0%